Compendium of DMS Series # **DMS Specifications** F-SC=SH | Item | DMS | | | | | | | | | |-----------------------|--|-----------|---------|--|--|--|--|--|--| | Model | 2-wire | NPN | PNP | | | | | | | | Power supply voltage | 10V ~ 28V DC 5V ~ 30V DC | | | | | | | | | | Switching current | 2.5mA~100mA | 30V/200 | mA Max. | | | | | | | | Contact capacity | 2.8W Max. | 6.0W | Max. | | | | | | | | Current consumption | 3mA Max. | 5mA Max. | | | | | | | | | Internal voltage drop | 3.5V Max. | 0.7V Max. | | | | | | | | | Leakage current | 0.05mA Max. | | | | | | | | | | Switching frequency | 1000Hz | | | | | | | | | | Impact resistance | 50G | | | | | | | | | | Circuit protection | Reverse polarity protection Surge protection | | | | | | | | | | Operating Temp. | -10°C ~ 70°C | | | | | | | | | | Enclosure | DMS,A05-DMS: IP64 / A06-DMS: IP68 | | | | | | | | | | Standard | CE marking, RoHS | | | | | | | | | [Note] A05 \ A06 type has only two-wire type. #### Four types of cross section #### Ordering code for DMS [Note1]Type J is not available for A06. [Note2]A05 and A06 have no NPN and PNP option. [Note3]A05 and A06 have no plug connector option. [Note4]A05, J type and M08, M12 don't have a-w Waterproof option. Standard A06 model already has a waterproof function. Add: The sockets of M08 and M12 need additional order. Please check on page 374. ### **EMS Series sensor** #### Compendium of EMS Series # Two types of cross section | G Type | General type(Aqua Blue) | Waterproof type(Yellow) | |--------|-------------------------|-------------------------| | | AITTAC | AUTAL | | Н Туре | General type(Aqua Blue) | Waterproof type(Yellow) | | | AIFTAE | AHYAC | #### **EMS Specifications** | Item | EMS | |-----------------------|--| | Model | 2-wire | | Power supply voltage | 10V ~ 28V DC | | Switching current | 2.5mA~100mA | | Contact capacity | 2.8W Max. | | Current consumption | 3mA Max. | | Internal voltage drop | 3.5V Max. | | Leakage current | 0.06mA Max. | | Switching frequency | 1000Hz | | Impact resistance | 50G | | Circuit protection | Reverse polarity protection Surge protection | | Operating Temp. | -10°C ~ 70°C | | Enclosure | EMS,A05-EMS: IP64 / A06-EMS: IP68 | | Standard | CE marking, RoHS | | Note | Temperature overheat protection | #### Ordering code for EMS [Note1]A05 and A06 have no plug connector option. [Note2]A05 and A06 don't have a-w Waterproof option. Standard A06 model has a waterproof function. Add: The sockets of M08 and M12 need additional order. Please check on page 374. # A ## **CMS Series sensor** Bending resistance SR: bending resistance Impact resistant materials #### Compendium of CMS Series # H Type Four types of cross section #### **CMS Specifications** | Item | CI | /IS | | | | | | |-----------------------|--------------------------|----------------|--|--|--|--|--| | Model | General | Heat resistant | | | | | | | Power supply voltage | 5V ~ 240V AC/DC | | | | | | | | Switching current | 100mA | | | | | | | | Contact capacity | 10W | Max. | | | | | | | Current consumption | N/ | /A | | | | | | | Internal voltage drop | 2.5V Max. @100mA DC N/A | | | | | | | | Leakage current | N/A | | | | | | | | Switching frequency | 200Hz | | | | | | | | Impact resistance | 50G | | | | | | | | Circuit protection | N/A | | | | | | | | Operating Temp. | -10°C ~ 70°C -10°C ~ 125 | | | | | | | | Enclosure | IP | 64 | | | | | | | Standard | CE marki | ng, RoHS | | | | | | #### Ordering code for CMS [Note1]A05 has no plug connector option. [Note2]A05 has no heat resistant option. Add:The sockets of M08 and M12 need additional order. Please check on page374. #### DMS, EMS, CMS Series #### Ordering code for accessories | F - MQ | Cylinder Ac | cessory | | | | | | | | | | | | |--------|------------------------|------------|------------|---------------|-------------|--------------|---------------|------------|------------|---------------|--|--|--| | | ①Category F: Accessory | | | | | | | | | | | | | | - | ② Model | | | | MQ : Cyli | nder Acces | sory | | | | | | | | | | Alu | minum allo | у | Aluminum | alloy (Thicl | (type) | St | el | | | | | | | | Code | For series | For bore size | Code | For series | For bore size | Code | For series | For bore size | | | | | | | A20: Φ20mm | | Ф20 | А32T: Ф32mm | | Ф32 | S06: Φ6mm |
 | Ф6 | | | | | | | A25: Φ25mm | | Ф25 А | A40Τ: Φ40mm | TWG | Ф40 | S08: Φ8mm | | Ф8 | | | | | | | A32: Ф32mm | MCK | Ф32 | А50Т: Ф50mm | | Ф50 | S10: Ф10mm | 1 | Ф10 | | | | | | | A40: Φ40mm | MBL | Ф40 | | | | S12: Ф12mm | PB/PBR | Ф12 | | | | | | ③Cylinder | A50: Ф50mm | | Ф50 | | | | S16: Ф16mm | | Ф16 | | | | | | | A63: Φ63mm | | Ф63 | | | | S20: Ф20mm | MF | Ф20 | | | | | | | A80: Ф80mm | | Ф80 | | | | S25: Ф25mm | MG | Ф25 | | | | | | | | | | | | | S32: Ф32mm | MA/MAC | Ф32 | | | | | | | | | | | | | S40: Ф40mm | 1 | Ф40 | | | | | | | | | | | | | S50: Ф50mm | 1 | Ф50 | | | | | | | | | | | | | S63: Ф63mm | 1 | Ф63 | | | | #### **Connection method** #### 2 wire, reed sensor connection #### 3 wire, solid state NPN connection #### 3 wire, solid state PNP connection 1.General connection Power Load Brown Black ф Blue Note: The indicator lights will light up when both auto switches are turned NO. 2.Series connection(And) #### DMS, EMS, CMS Series #### The selection of sensor | OMSG | CMSG | EMSG | | HE | KL | | | | мс | K | | | | | AC | CQ/T | ACQ | | | | | ACQ |) | RMTL, | RMT
RMTL | SDA | \/RM | T/RI | /ITL | | SI | DA | |--|--------------|---|----------------------------|--|--|-----------------------------|---|--|-----------------------------------|--|--|--------|--|------------------------------|-----------------------|--|-------------|------|---|---|--|---|--|---------------------------------|---|----------------------------------|-------------------|------|--------------------------|--|--|--| | | | | 10 | | | 25 | 25 | | | | 3 80 | 12 | 2 16 | 20 | | | | | 80 | 100 | | | | | | | | | | 50 | _ | 80 | | | | | | • | | • | • | | - | | | | | • | • | • | • | | _ | • | • | • | • | • | • | • | • | • | • | • | • | • | | | | Share of the last | HFK | Н | IFK/I | HFK | P H | IFK | | | | | TCL | /TCM |
 | | | | | | | QC | cĸ | | | | | | Т | ΓR | | | | AS TAX . | and the last | | 10 | | | | | | 6 | 10 1 | 2 16 | _ | 25 | т т | | 50 | 63 8 | 0 10 | 0 12 | 16 | 20 | 25 | | 40 | 50 | 63 | 6 | 10 | | 20 | 25 | 32 | | | | | | • | • | • | • | • | + | | | | | • | • | • | • | | | • | • | • | • | • | • | • | • | • | • | • | • | • | | ' ነ | | | | | SA | | | | | | HF | | | | | | HFY | | | | | HFP | | | | | MD/ | | | | | K/B | | | | | 32 | 40 | | | 80 | 00 | 6 | 10 1 | 6 20 | T | 32 | 40 | 6 | 10 | | 0 2 | 32 | 10 | | 20 | | 32 | 6 | | | | 25 | 32 | | 50 | | | | | • | • | • | • | • | • | | | • | | | • | | • | • | | | • | • | • | • | • | • | • | • | • | • | • | | • | Stai | nles | | el | | | | | | | | | | | | | | | | | | | 6 | PI
8 | B/PE | 3 R
12 | 16 | MI
a 1 | _ | 12 1 | 6 20 | _ | 5 32 | /I | 20 | 25 | | 0 20 | 25 | 32 | | 50 | 63 | 16 | 20 | | 32 | | 50 | 63 | 4 | | | | | and the same | • | • | • | • | • | _ | • | _ | • • | • | | • | • | • | • (| | _ | • | • | • | • | • | • | • | • | • | • | • | 1 | | | LEWIS . | 100 | SI I | | | | | ninu | m all | оу | | _ | | | | | ' | | | _ | | | | | | | | | | | | | | | | + | | 20 | 25 | M E 32 | | 50 | 63 4 | <u>ا</u> ۱ | MCF
50 6 | | | | | | | | | | lt | | | | | ory
cylir | | | ıt | | | | | | 4 | | | • | • | • | • | • | | • | | • | | | | | | | | | | а | 3611 | 501 (| JII a | Cylli | luei | | | | | | | | | | | | | | | sc | : | | | · | | S | ЭC | 60 | 00 | 100 1 | 25 | 160 2 | 25 | 10 | - 400 | 200 | $\overline{}$ | | 1000 | 32 | 40 | 50 | 03 | 80 | | 20 | 10012 | ノロコとい |) IZ | 5 160 | 1200 | 250 | | | | | | | | | | | | | | | | | | | Name of the last o | 110 | | 32 | 40 | 50 | 63 | 80 | 100 1 | 23 | 100 2 | JU 231 |) 12: | 5 160 | 200 | 250 | | | lt n | eeds | an a | cce | ssor | y to | mou | nt a | sen | sor | on a | cyl | 'inde | er: | | | MINE | 1 | | • | • | • | • | • | • | • | | • | • | | • | • | | | lt n | eeds | an a | cce | ssor | y to | mou | nt a | sen | sor | on a | cyl | linde | ∍r | | | ASTER OF | + | | | • | • | • | • | | • | | | | • | • | | | | lt n | eeds | | | ssor | y to | | | sen | sor | on a | | | er | | | DMSJ | + | CMSJ | | • | | • | • | | • | | | | • | | | | | It n | eeds | an a | | ssor | y to | | nt a | sen | sor | on a | | linde
TN | er | | | DMSJ | + | CMSJ | • | • | ACQ | •
/TA(| • CQ | • | • | • | • • | • | •
S | • DA | • | 63 | 80 | | | QC | K | | | QI | DK | | | | 1 | TN | | 32 | | DMSJ | | CMSJ | | • | ACQ | •
/TA(| • CQ | | • | • | • • | • | •
S | • DA | • | 63 | 80 | It n | | QC | K | | 20 | | | |) 10 | | 1 | TN | | 32 | | DMSJ | + | CMSJ | • | • | ACQ | •
/TA(| • CQ | • | • | • | • • | • | •
S | • DA | • | 63 | 80 | | | QC | K | | | QI | DK | | | | 1 | TN | | 32 | | DMSJ | | CMSJ | • | • | ACQ | •
/TA(| • CQ | • | • | • | • • | • | •
S | • DA | • | 63 | 80 | | | QC | K | | | QI | DK | | | | 1 | TN | | 322 | | DMSJ | + | CMSJ | 32 | 40 | ACQ | •
/ TA (| • 80 | • | • | • | 6 20 | 25 | •
5 32 | • DA 40 | 50 | | | 100 | | QC | K | 63 | 20 | Q I | DK 32 | 40 | | | 1 | TN | 25 | | | | CMSH | CMSJ | 32 | 40 | • 500 • | • /TA(| • 800
800 | • | • | 2 16 | 6 20 | 25 | •
5 32 | • DA 40 | 50 | | • | 100 | | QC | K | 63 | 20 | QI 25 | DK 32 | 400 | | | 1 | TN 20 | 25 | • | | | | WE) | 32 | 40 | • 500 • | 63
• | • 800
800 | 1000 | 1: | • 16 H | 20 | 25 | •
5 32 | • DA 40 | • 50 | • | •
• | 100 | 32 | QC 40 | K 50 | 63 | 20 | Q1
25 | 32
• | 40 |) 10 | 0 1 | 6 : | ************************************** | 25 | •
T | | | | WE) | 32 | 40
40
140 | 500 500 160 • | 63
• | • 800 • | 1000 | 1: | • 16 H | • • • • • • • • • • • • • • • • • • • | 25 | • S S 32 • • | • HF 6 | 50
• | • HF | •
•
• | 100 | 32
• | QC 440 • • • • • • • • • • • • • • • • • • | K 50 | 63 | 20 | Q1
25 | 32
• | 40 |) 10 | 63 | 6 : | 220 • • • • • • • • • • • • • • • • • • | 25
• | •
T | | MSH | CMSH | EMSH | 32 | 40
40
140 | 500 500 160 • | 63
• T(6 | 800 800 800 800 800 800 800 800 800 800 | 1000
6 1 | 1: | H
H16 2 | • • • • • • • • • • • • • • • • • • • | 25 | • S S 32 • • | 40 HFF 6 | 50 • HLS | • HF | • P 2 | 100 | 32
• HII
16 2 | QC 440 • • • • • • • • • • • • • • • • • • | K 50 5 322 | 63 | 20 | 25
• | 32
• HFC
32
• LH | 40 | 50 | 63 | 10
MP(| ************************************** | 25
• HF1
6 20
• | • TT 2: | | //SH | CMSH | EMSH | 32 | 40
40
140
• QI
25 | 500 500 1600 • DK | 63
• T(6 | 80 80 • 6 | 6 1 HLL 8 1 | 12
10
0
0
0/H | H
116 2
• ILQL | 5 200
• • • • • • • • • • • • • • • • • • • | 25 | • S 32 • • 8 | • 40 • HF 66 • HLS/ | • 50 • HLS | ## 3
**BL 20 | • 25 | 100 | HII 16 2 • 18 8 1 | QC 40 • • • • • • • • • • • • • • • • • • | K 550 • 2 16 | 63 | 20 | 25
• 25
• H | 32
•
HFC
32
•
LH | 40 • 20 | 50 | 63 | 10
• MP(| TN 20 • 16 • G G | 25
• HFT
3 20
• | • TT 2: | | //SH | CMSH | EMSH | 32 | 40
40
140 | 500 500 160 • | 63
• T(6 | 800 800 66 6 | • 1000
• HL:
8 1 | 12
10
0
0
0/H | H
116 2
• ILQL | • • • • • • • • • • • • • • • • • • • | 25 | • S 32 • • 8 | + HLS/ | • 50 • HLS | • HF | • P 2 | 100 | HII 6 2 6 8 1 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | QCC 440 • | K 550 • 2 16 | 63 | 20 | 25
• | 32
• HFC
32
• LH | 40 • | 50 | 63 | 10
MP(| 20 | 25 HFT 20 • | • 28 | | //SH | CMSH | EMSH | 32
• 125
• 20 | 40
40
140
• QI
25 | 500 500 1600 • DK | 63
• T(6
• 40 | 800 800 6 6 HRR | • 1000
• 6 1
• HLL
8 1 | 1:
0
0
Q/H | H H 16 2 11 11 11 11 11 11 11 11 11 11 11 11 1 | FFZ 0 25 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 25 | • S 32 • • 8 8 • | 40 HF 66 HLS/ | • 50 • HLS | ### 33 ### 35 ### 20 ### 4 #### 4 ### 4 #### 4 #### 4 ###### | • 25 • | 100 | HII 16 2 8 1 HLF | QCC 440 • • • • • • • • • • • • • • • • • • | 50 32 • | 63
• • • • • • • • • • • • • • • • • • • | 20 • • • • • • • • • • • • • • • • • • • | 25
• 25
• H | 32
• HFC
32
• LH | 40 • 40 • 20 • RI | 50
•
6
• | 63 | 10
• MP(| ************************************** | 25 HF1 20 • HFE | • 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | //SH | CMSH | EMSH | 32
• 125
• 20
• 2 | 40
40
140
• QI
25 | 500 500 1600 • DK | 63
• T(6
• 40 | 80 80 110 • HR | 1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000 | 1:
0
0
Q/H | H H 16 2 11 11 11 11 11 11 11 11 11 11 11 11 1 | FZ 0 25 0 20 0 25 0 200 0 200 | 25 | • S S 322 • • 8 8 • • 16 16 16 16 16 16 16 16 16 16 16 16 16 | 40 HF 6 6 HLS/ 12 HI 20 | • 50 • HLS 16 • FK 25 | ### 33 ### 35 ### 20 ### 4 #### 4 ### 4 #### 4 #### 4 ###### | 25
• | 100 | HI 16 2 • • • • • • • • • • • • • • • • • • | QC 440 | 50 32 • | 63
• • • • • • • • • • • • • • • • • • • | 20 • • • • • • • • • • • • • • • • • • • | 25
• 25
• H
10
• 12 | 32
• HFC
32
• LH
16
• 10 | 40
• 40
• 20
• RI
16 | 50
•
6
• | 63 | 10
• MP(
10
• 8 | TN 220 • 16 • G 12 • 12 | 25
• HFT1
• 20
• HFC2
• HFC2
• HFC2 | • 2: • • • • • • • • • • • • • • • • • • | | MSH | | EMSH | 32
• 125
• 20 | 40 40 40 40 40 40 40 40 40 40 | 50 500 • • • • • • • • • • • • • • • • • | 63
• T(6
• 40 | 800 800 6 6 HRR | • 1000
• 6 1
• HLL
8 1 | 12
0
0
0
0
12
0 | H 116 2 | FFZ 0 25 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 25 | • S S 322 • • 8 8 • • 16 16 16 16 16 16 16 16 16 16 16 16 16 | 40 HFF 6 HLS/ 12 HI 20 • | • 50 • HLS 16 • FK 25 | HFF 33 4 20 • 32 • | • 25 • | 100 | 8 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | QC 440 | 50 32 • | 63
• • • • • • • • • • • • • • • • • • • | 20 • • • • • • • • • • • • • • • • • • • | 25
• 25
• H | 32
• HFC
32
• LH | 40 • 40 • 20 • RI | 50
•
6
• | 63 | 10
• MP(| TN 220 • • • • • • • • • • • • • • • • • • | 25
• HFT1
• 20
• HFC2
• HFC2
• HFC2 | 28 • | | мѕн | CMSH | EMSH | 32
• 125
• 20
• 2 | 40 40 40 40 40 40 40 40 40 40 40 40 40 4 | 500 500 500 500 500 500 500 500 500 500 | 63
• T(6
• 40
• 10 | 800 800 800 800 800 800 800 800 800 800 | 6 1 HL: 8 1 • QQ | 11:
0
0
Q/H
2
• | H 16 2 | FZ 0 25 0 0 25 0 0 0 20 0 0 0 0 0 0 0 0 0 | 25 | • S S 322 • • 8 8 • • 16 16 16 16 16 16 16 16 16 16 16 16 16 | 40 HFF 6 HLS/ 12 HI 20 • | • 50 • HLS 16 • HRS | HIF 33 | 25
• | 100 | HI 16 2 • • • • • • • • • • • • • • • • • • | QC 440 | • 50 • 50 32 • • • • • • • • • • • • • • • • • • | 63
• • • • • • • • • • • • • • • • • • • | 20 • • • • • • • • • • • • • • • • • • • | 25
• 25
• H
10
• 12 | 32
• HFC
32
• LH
16
• 10 | 40
• 40
• 20
• RI
16 | 50
•
6
• | 63 | 10
• MP(
10
• 8 | TN 220 • 16 • G 12 • 12 | 25
• HFT1
• 20
• HFC2
• HFC2
• HFC2 | • 25 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | DMSE CMSE ACF 40 12 16 20 25 32 50 63 32 40 50 63 80 100 125 160 200 12 16 20 SAI ACE ACE/JSI 25 32 40 50 63 80 100 125 SAI/TSAI #### DMS, EMS, CMS Series #### Installation #### Sensor for " # " shape cylinder SAI, SAU series will substitute for SI, SU series. And the corresponding sensors have some adjustments as the chart below. #### Socket #### Ordering code | ①Catagory code | F : Accessory | | | | | | | | | | |---------------------------|----------------------|----------------|---------------|--------------|--|--|--|--|--|--| | ②Specification code | EC : Connecting Wire | | | | | | | | | | | ③Socket type | | M08:M8 socket | M12:M12 socke | et | | | | | | | | 4 Wire type | | B: 2-wire type | C:3-wire type | | | | | | | | | ⑤Wire length | 020: 2 meters | 030:3meters | 050:5meters | 100:10meters | | | | | | | | ®Additional specification | Blank: General type | | | | | | | | | | #### **Appearance** #### M8 socket #### M12 socket #### Instruction - 1. Sensor shall not fall down or bear great impact when it is installed. - 2. The wire of the Sensor shall not move with the action of cylinder. - 3. Clamping torque shall be within the allowable scope when the Sensor is installed (0.15~0.2Nm). - 4. Sensor shall be installed in the middle position of the action scope. - 5. Sensor wiring: - A. The wire is unable to bear repetitive torsion and tension. Please wire an external load before switch the power on. - B. No poor insulation in wire. - $\boldsymbol{\mathsf{C.}}$ Do not wire with power line, high voltage line or use one wiring pipe. - D. Pleas wire the circuit correctly base on the circuit diagram. - 6. Execute scheduled maintenance by the following guidelines: - A. Make sure the sensor is firmly fixed. - B. Make sure the wire is intact. - C. Make sure that LED indicate the movement of cylinder correctly. - 7. Application of environment: - A. It is Not allow to use the sensor in the environment with explosive gas. - **B.** Magnetic sensor shall not be used in the environment with external magnetism. - C. Magnetic sensor shall not be used in the environment that is always eroded by water. - $\textbf{D.}\ Magnetic\ sensor\ shall\ not\ be\ used\ in\ the\ environment\ with\ oil\ moisture\ or\ chemical\ substance.$ - E. Magnetic sensor shall not be used in the environment with periodically changing temperature.F. Magnetic sensor shall not be used in the environment with excessively great impact. - G. Magnetic sensor shall not be used in the environment with sources of electrical pulse. - $\textbf{H.} \ \textbf{Avoid the environment with accumulated iron power and dense magnetic objects.}$